Moving Average ตัวอย่างนี้สอนวิธีการคำนวณค่าเฉลี่ยเคลื่อนที่ของชุดข้อมูลเวลาใน Excel ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อทำให้จุดสูงสุดและที่ราบสูงเป็นไปอย่างราบรื่นเพื่อให้ทราบถึงแนวโน้มต่างๆได้ง่ายขึ้นอันดับแรกลองดูที่ชุดข้อมูลเวลาของเรา คลิกการวิเคราะห์ข้อมูลคลิกที่นี่เพื่อโหลด Add-In Toolkit การวิเคราะห์ 3 เลือก Moving Average และคลิก OK.4 คลิกในกล่อง Input Range และเลือกช่วง B2 M2 5. คลิกที่ช่อง Interval และพิมพ์ 6.6 คลิกที่ Output Range และเลือกเซลล์ B3.8 วาดกราฟของค่าเหล่านี้การอธิบายเนื่องจากเราตั้งค่าช่วงเป็น 6 ค่าเฉลี่ยเคลื่อนที่คือค่าเฉลี่ยของ 5 จุดข้อมูลก่อนหน้าและ จุดข้อมูลปัจจุบันเป็นผลให้ยอดและหุบเขาถูกทำให้ราบเรียบกราฟแสดงแนวโน้มการเพิ่มขึ้น Excel ไม่สามารถคำนวณค่าเฉลี่ยเคลื่อนที่สำหรับจุดข้อมูล 5 จุดแรกเนื่องจากไม่มีจุดข้อมูลก่อนหน้านี้มากพอ 9 ทำซ้ำตามขั้นตอนที่ 2 ถึง 8 สำหรับช่วง 2 และช่วงเวลา 4. บทสรุป The la rger ช่วงเวลายิ่งยอดและหุบเขาจะเรียบขึ้นช่วงเวลาที่มีขนาดเล็กยิ่งใกล้กับค่าเฉลี่ยเคลื่อนที่จะเป็นจุดข้อมูลที่แท้จริงการคาดการณ์ในระดับปานกลางการคาดการณ์ขณะที่คุณอาจคาดเดาเรากำลังมองหาแนวทางที่ดั้งเดิมที่สุด แต่หวังว่าสิ่งเหล่านี้จะแนะนำอย่างคุ้มค่าสำหรับปัญหาด้านคอมพิวเตอร์บางส่วนที่เกี่ยวข้องกับการคาดการณ์ในสเปรดชีตในหลอดเลือดดำนี้เราจะดำเนินต่อไปโดยเริ่มจากจุดเริ่มต้นและเริ่มต้นทำงานกับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่เฉลี่ยการคาดการณ์เฉลี่ยทุกคนคุ้นเคยกับการย้าย การคาดการณ์โดยเฉลี่ยไม่ว่าพวกเขาจะเชื่อหรือไม่ว่านักศึกษาวิทยาลัยทุกคนทำแบบฝึกหัดตลอดเวลาคิดเกี่ยวกับคะแนนการทดสอบของคุณในหลักสูตรที่คุณกำลังจะมีการทดสอบสี่ครั้งระหว่างภาคการศึกษา Let s สมมติว่าคุณมี 85 คนในการทดสอบครั้งแรกของคุณ คุณคาดการณ์คะแนนทดสอบที่สองคุณคิดว่าครูของคุณจะคาดการณ์คะแนนทดสอบต่อไปคุณคิดว่าเพื่อนของคุณอาจเป็นอย่างไร dict สำหรับคะแนนการทดสอบต่อไปคุณคิดว่าพ่อแม่ของคุณอาจคาดการณ์สำหรับคะแนนการทดสอบต่อไปของคุณไม่ว่าคุณจะทำร้ายเพื่อนหรือพ่อแม่ทุกคนพวกเขาและครูของคุณมีแนวโน้มที่จะคาดหวังให้คุณได้อะไรใน พื้นที่ของ 85 ที่คุณเพิ่งได้ดีตอนนี้ขอให้สมมติว่าแม้จะมีการโปรโมตตัวเองกับเพื่อน ๆ ของคุณคุณจะประเมินตัวเองและคิดว่าคุณสามารถเรียนได้น้อยกว่าสำหรับการทดสอบที่สองและเพื่อให้คุณได้รับ 73. ตอนนี้ ทุกคนมีความกังวลและไม่แยแสที่จะคาดหวังว่าคุณจะได้รับการทดสอบที่สามของคุณมีสองแนวทางที่เป็นไปได้มากสำหรับพวกเขาในการพัฒนาประมาณการโดยไม่คำนึงว่าพวกเขาจะแบ่งปันกับคุณหรือไม่พวกเขาอาจพูดกับตัวเองว่าผู้ชายคนนี้มักจะเป่า สูบบุหรี่เกี่ยวกับสมาร์ทของเขาเขาจะได้รับอีก 73 ถ้าเขาโชคดีอาจเป็นพ่อแม่จะพยายามที่จะสนับสนุนมากขึ้นและพูดว่าดีเพื่อให้ห่างไกลคุณได้รับ 85 และ 73 ดังนั้นบางทีคุณควรจะคิดเกี่ยวกับการเกี่ยวกับ 85 73 2 79 ฉันไม่ทราบบางทีถ้าคุณทำปาร์ตี้น้อยและ ไม่มีการพ่ายพังพอนไปทั่วสถานที่และถ้าคุณเริ่มต้นทำมากขึ้นการศึกษาที่คุณจะได้รับคะแนนสูงกว่าทั้งสองประมาณการเหล่านี้เป็นจริงการคาดการณ์เฉลี่ยโดยเฉลี่ยก่อนใช้เฉพาะคะแนนล่าสุดของคุณในการคาดการณ์ประสิทธิภาพในอนาคตของคุณ เรียกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่โดยใช้ช่วงเวลาหนึ่งของข้อมูลประการที่สองเป็นค่าพยากรณ์เฉลี่ยเคลื่อนที่ แต่ใช้สองช่วงของข้อมูลสมมติว่าคนเหล่านี้ทั้งหมด busting ในใจที่ดีของคุณมีการจัดเรียงของ pissed คุณปิดและคุณตัดสินใจที่จะทำ ดีในการทดสอบที่สามด้วยเหตุผลของคุณเองและจะนำคะแนนที่สูงขึ้นในด้านหน้าของพันธมิตรของคุณคุณจะทดสอบและคะแนนของคุณเป็นจริง 89 ทุกคนรวมทั้งตัวคุณเองเป็นที่ประทับใจตอนนี้คุณมีการทดสอบครั้งสุดท้ายของภาคการศึกษามา ขึ้นและตามปกติคุณรู้สึกจำเป็นที่จะต้องกระตุ้นให้ทุกคนในการคาดการณ์ของพวกเขาเกี่ยวกับวิธีการที่คุณจะทำในการทดสอบครั้งสุดท้ายดีหวังว่าคุณจะเห็นรูปแบบตอนนี้หวังว่าคุณจะเห็นรูปแบบที่คุณเชื่อว่าเป็นที่ถูกต้องที่สุด Histl ขณะที่เราทำงานตอนนี้เรากลับไปที่ บริษัท ทำความสะอาดแห่งใหม่ซึ่งเริ่มต้นโดยพี่สาวที่แยกกันอยู่ของคุณชื่อ Whistle ขณะที่เราทำงานคุณมีข้อมูลการขายในอดีตที่แสดงโดยส่วนต่อไปนี้จากสเปรดชีตก่อนอื่นเราจะนำเสนอข้อมูลสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ย้อนหลัง 3 ช่วง รายการสำหรับเซลล์ C6 ควรเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ลงไปที่เซลล์อื่น ๆ C7 ถึง C11.Notice ค่าเฉลี่ยของการเคลื่อนย้ายข้อมูลทางประวัติศาสตร์ล่าสุด แต่ใช้ระยะเวลาสามงวดล่าสุดสำหรับการคาดการณ์แต่ละครั้ง สังเกตเห็นว่าเราไม่จำเป็นต้องทำการคาดการณ์ในช่วงที่ผ่านมาเพื่อที่จะพัฒนาการคาดการณ์ล่าสุดของเราซึ่งแน่นอนว่าแตกต่างจากแบบจำลองการทำให้เรียบที่อธิบายไว้ก่อนหน้านี้ซึ่งรวมถึงการคาดการณ์ที่ผ่านมาเนื่องจากเราจะใช้ข้อมูลเหล่านี้ในหน้าเว็บถัดไปเพื่อวัดผล ทำนาย validity. Now ฉันต้องการที่จะนำเสนอผลที่คล้ายคลึงกันสำหรับระยะเวลาสองคาดการณ์การเคลื่อนไหวเฉลี่ยรายการสำหรับเซลล์ C5 ควรจะเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ ลงไปที่เซลล์อื่น ๆ C6 ถึง C11.Notice ตอนนี้เพียงสองชิ้นล่าสุดของข้อมูลทางประวัติศาสตร์ที่ใช้สำหรับการคาดการณ์แต่ละครั้งที่ฉันได้รวมการคาดการณ์ที่ผ่านมาเพื่อเป็นตัวอย่างและเพื่อใช้ในภายหลังในการตรวจสอบการคาดการณ์สิ่งอื่น ๆ ที่มี ความสำคัญที่จะต้องแจ้งให้ทราบล่วงหน้าสำหรับการคาดการณ์ค่าเฉลี่ยของระยะเวลา m-m เฉพาะค่าข้อมูลล่าสุดของ m ที่ใช้เพื่อทำให้การคาดการณ์ไม่มีสิ่งใดที่จำเป็นสำหรับระยะเวลาการเคลื่อนที่โดยเฉลี่ยของ m-period เมื่อทำการคาดการณ์ที่ผ่านมาสังเกตว่าการทำนายครั้งแรกเกิดขึ้น ในช่วง m 1. ปัญหาเหล่านี้จะมีความสำคัญมากเมื่อเราพัฒนาโค้ดของเราการพัฒนาฟังก์ชัน Average Moving ตอนนี้เราจำเป็นต้องพัฒนาโค้ดสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ที่สามารถใช้งานได้อย่างคล่องตัวยิ่งขึ้นโค้ดดังต่อไปนี้สังเกตว่า input เป็น สำหรับจำนวนรอบระยะเวลาที่คุณต้องการใช้ในการคาดการณ์และอาร์เรย์ของค่าทางประวัติศาสตร์คุณสามารถเก็บไว้ในสมุดงานที่คุณต้องการใด ๆ MovementAverage ฟังก์ชันประวัติศาสตร์ NumberOfPeriods เป็นบาป gle ประกาศและเริ่มตัวแปร Dim Item As Variant Dim Counter เป็นจำนวนเต็ม Integer Dim เป็น Single Dim HistoricalSize As Integer Initializing variables Counter 1 Accumulation 0 การกำหนดขนาดของ Historical HistoricalSize. For Counter จำนวน 1 ต่อ NumberOfPeriods สะสมจำนวนที่เหมาะสมของค่าที่สังเกตก่อนหน้านี้สะสมสะสมข้อมูลประวัติ HistoricalSize - NumberOfPeriods Counter. MovingAverage การสะสม NumberOfPeriods รหัสจะอธิบายในชั้นเรียนคุณต้องการวางตำแหน่งฟังก์ชันในสเปรดชีตเพื่อให้ผลของการคำนวณปรากฏขึ้นที่ควร เช่นเดียวกับค่าเฉลี่ยต่อไปนี้ค่าเฉลี่ยสิ่งที่พวกเขาอยู่ระหว่างตัวบ่งชี้ทางเทคนิคที่ได้รับความนิยมมากที่สุดค่าเฉลี่ยเคลื่อนที่จะใช้ในการวัดทิศทางของแนวโน้มในปัจจุบันค่าเฉลี่ยเคลื่อนที่ที่เขียนโดยทั่วไปในบทแนะนำนี้เป็น MA คือผลทางคณิตศาสตร์ที่คำนวณโดยค่าเฉลี่ย จำนวนจุดข้อมูลที่ผ่านมาเมื่อพิจารณาแล้วค่าเฉลี่ยที่เกิดขึ้นจะถูกวางแผนลงบนแผนภูมิเพื่อให้ผู้ค้าสามารถดูข้อมูลที่ราบเรียบแทนที่จะมุ่งเน้นไปที่ความผันผวนของราคาในแต่ละวันที่มีอยู่ในตลาดการเงินทั้งหมดได้ง่ายที่สุด รูปแบบของค่าเฉลี่ยเคลื่อนที่ (moving average) ซึ่งเป็นค่าเฉลี่ยเคลื่อนที่เฉลี่ย SMA คำนวณโดย tak ค่าเฉลี่ยเลขคณิตของชุดของค่าที่ระบุตัวอย่างเช่นในการคำนวณค่าเฉลี่ยเคลื่อนที่ 10 วันคุณจะเพิ่มราคาปิดจาก 10 วันที่ผ่านมาและหารผลตาม 10 ในรูปที่ 1 ผลรวมของราคา สำหรับ 10 วันที่ผ่านมา 110 จะหารด้วยจำนวนวันที่ 10 เพื่อไปถึงค่าเฉลี่ย 10 วันหากผู้ประกอบการค้าต้องการเห็นค่าเฉลี่ย 50 วันแทนจะต้องคำนวณแบบเดียวกัน แต่จะรวมถึงราคา ในช่วง 50 วันที่ผ่านมาค่าเฉลี่ยที่ต่ำกว่า 11 คำนึงถึงจุดข้อมูล 10 จุดที่ผ่านมาเพื่อให้ผู้ค้าทราบว่าสินทรัพย์มีราคาเทียบกับ 10 วันที่ผ่านมาบางทีคุณอาจสงสัยว่าเหตุใดผู้ค้าทางเทคนิคจึงเรียกเครื่องมือนี้ว่ามีการย้าย ค่าเฉลี่ยและไม่ใช่แค่ค่าคงที่ปกติค่าคำตอบก็คือเมื่อค่าใหม่มีพร้อมใช้งานจุดข้อมูลที่เก่าแก่ที่สุดต้องถูกลดลงจากชุดข้อมูลและจุดข้อมูลใหม่ ๆ ต้องมาแทนที่ดังนั้นชุดข้อมูลจึงมีการย้ายข้อมูลไปยังข้อมูลใหม่อย่างต่อเนื่อง เป็นมันจะกลายเป็นใช้ได้วิธีนี้ ca การคำนวณจะทำให้มั่นใจได้ว่าจะมีการบันทึกเฉพาะข้อมูลปัจจุบันเท่านั้นในรูปที่ 2 เมื่อมีการเพิ่มค่าใหม่ของชุดที่ 5 ช่องสีแดงแทนจุดข้อมูลที่ผ่านมา 10 ตัวจะเลื่อนไปทางขวาและค่าสุดท้ายจะถูกลดลงจาก 15 การคำนวณเนื่องจากค่าที่ค่อนข้างเล็ก 5 แทนค่าสูง 15 คุณคาดว่าจะเห็นค่าเฉลี่ยของการลดลงของชุดข้อมูลซึ่งในกรณีนี้มีค่าตั้งแต่ 11 ถึง 10 ค่าเฉลี่ยของค่าเฉลี่ยที่เกิดขึ้นเมื่อค่าของ แมสซาชูเซตได้รับการคำนวณพวกเขาจะวางแผนลงกราฟและเชื่อมต่อเพื่อสร้างเส้นเฉลี่ยเคลื่อนที่เส้นโค้งเหล่านี้เป็นปกติในแผนภูมิของผู้ค้าทางเทคนิค แต่วิธีการใช้อาจแตกต่างกันมากขึ้นในภายหลังนี้เป็นที่คุณเห็นใน รูปที่ 3 เป็นไปได้ที่จะสามารถเพิ่มค่าเฉลี่ยเคลื่อนที่ได้มากกว่าหนึ่งรายการในแผนภูมิใด ๆ โดยการปรับจำนวนช่วงเวลาที่ใช้ในการคำนวณเส้นโค้งเหล่านี้ดูเหมือนจะทำให้เสียสมาธิหรือเกิดความสับสนในตอนแรก แต่คุณจะคุ้นเคยกับเวลาที่ผ่านไปเส้นสีแดงเป็นเพียงราคาเฉลี่ยในช่วง 50 วันที่ผ่านมาในขณะที่เส้นสีน้ำเงินเป็นราคาเฉลี่ยในช่วง 100 วันที่ผ่านมาตอนนี้คุณเข้าใจว่าค่าเฉลี่ยเคลื่อนที่คืออะไรและจะเป็นอย่างไรเราจะแนะนำการย้ายที่แตกต่างกัน ค่าเฉลี่ยและตรวจสอบว่ามันแตกต่างจากค่าเฉลี่ยเคลื่อนที่ที่กล่าวถึงก่อนหน้านี้ค่าเฉลี่ยเคลื่อนที่ง่ายเป็นที่นิยมอย่างมากในหมู่ผู้ค้า แต่เช่นเดียวกับตัวชี้วัดทางเทคนิคทั้งหมดก็มีนักวิจารณ์หลายคนยืนยันว่าประโยชน์ของ SMA มีข้อ จำกัด เนื่องจากแต่ละจุดใน ชุดข้อมูลมีการถ่วงน้ำหนักเหมือนกันโดยไม่คำนึงถึงตำแหน่งที่เกิดขึ้นในซีเควนซ์นักวิจารณ์ยืนยันว่าข้อมูลล่าสุดมีความสำคัญมากกว่าข้อมูลที่เก่ากว่าและควรมีอิทธิพลมากขึ้นต่อผลลัพธ์สุดท้ายในการตอบสนองต่อคำติชมนี้ผู้ค้าเริ่มให้ น้ำหนักมากขึ้นไปยังข้อมูลล่าสุดซึ่งได้นำไปสู่การประดิษฐ์ใหม่หลายประเภทของค่าเฉลี่ยใหม่ซึ่งเป็นที่นิยมมากที่สุดซึ่งเป็นค่าเฉลี่ยเคลื่อนที่ EMA สำหรับการอ่านเพิ่มเติมโปรดดูที่ B ความหมายของค่าเฉลี่ยถ่วงน้ำหนักและความแตกต่างระหว่าง SMA และ EMA ค่าเฉลี่ยเคลื่อนที่ที่เป็นตัวบ่งชี้คือค่าเฉลี่ยเคลื่อนที่ที่ระบุเป็นค่าเฉลี่ยเคลื่อนที่ที่ให้น้ำหนักมากกว่าราคาล่าสุดในความพยายามที่จะทำให้สามารถตอบสนองต่อข้อมูลใหม่ได้มากขึ้นเรียนรู้ สมการค่อนข้างซับซ้อนสำหรับการคำนวณ EMA อาจไม่จำเป็นสำหรับผู้ค้าจำนวนมากเนื่องจากเกือบทุกชุดรูปแบบการคำนวณทำสำหรับคุณอย่างไรก็ตามสำหรับคุณ geeks คณิตศาสตร์ออกมีที่นี่สมการ EMA เมื่อใช้สูตรการคำนวณจุดแรกของ EMA คุณอาจสังเกตเห็นว่าไม่มีค่าที่จะใช้เป็น EMA ก่อนหน้านี้ปัญหาเล็ก ๆ นี้สามารถแก้ไขได้โดยการเริ่มต้นการคำนวณโดยมีค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยและดำเนินการต่อโดยใช้สูตรข้างต้นจากที่นี้เราได้จัดทำสเปรดชีตตัวอย่างไว้ด้วย รวมถึงตัวอย่างชีวิตจริงของวิธีการคำนวณทั้งค่าเฉลี่ยเคลื่อนที่แบบง่ายและค่าเฉลี่ยเคลื่อนที่ที่เป็นตัวชี้วัดความแตกต่างระหว่าง EMA กับ SMA ตอนนี้คุณฮ่า เราเข้าใจถึงวิธีการคำนวณ SMA และ EMA ลองพิจารณาดูว่าค่าเฉลี่ยเหล่านี้แตกต่างกันอย่างไรโดยดูที่การคำนวณ EMA คุณจะสังเกตเห็นว่ามีจุดเน้นมากขึ้นในจุดข้อมูลล่าสุดทำให้เป็น ชนิดของค่าเฉลี่ยถ่วงน้ำหนักในรูปที่ 5 ตัวเลขของช่วงเวลาที่ใช้ในแต่ละค่าเฉลี่ยเท่ากับ 15 แต่ EMA ตอบสนองได้เร็วกว่าราคาที่เปลี่ยนแปลงแจ้งให้ EMA ทราบว่า EMA มีมูลค่าสูงขึ้นเมื่อราคาเพิ่มขึ้นและลดลงเร็วกว่า SMA เมื่อราคาลดลงการตอบสนองนี้เป็นเหตุผลหลักว่าทำไมผู้ค้าจำนวนมากต้องการใช้ EMA ผ่าน SMA. What Different Days Mean Moving averages เป็นตัวบ่งชี้ที่สามารถปรับแต่งได้เองซึ่งหมายความว่าผู้ใช้สามารถเลือกเฟรมเวลาได้อย่างอิสระ ต้องการในการสร้างค่าเฉลี่ยช่วงเวลาที่ใช้บ่อยที่สุดในการย้ายค่าเฉลี่ยคือ 15, 20, 30, 50, 100 และ 200 วันยิ่งช่วงเวลาสั้น ๆ ที่ใช้ในการสร้างค่าเฉลี่ยยิ่งมีความละเอียดอ่อนมากเท่าไร ช่วงเวลาที่มีความสำคัญน้อยลงหรือเรียบขึ้นค่าเฉลี่ยจะไม่มีกรอบเวลาที่เหมาะสมที่จะใช้เมื่อตั้งค่าค่าเฉลี่ยเคลื่อนที่ของคุณวิธีที่ดีที่สุดในการหาค่าที่เหมาะสมสำหรับคุณคือการทดสอบกับตัวเลข ของช่วงเวลาที่ต่างกันจนกว่าคุณจะได้พบกับช่วงเวลาที่เหมาะสมกับกลยุทธ์ของคุณ
No comments:
Post a Comment